Tropical Trees and Forests: An Architectural Analysis

Hallé, F., Oldeman, R. A. A. & Tomlinson, P. B. (1978). Tropical Trees and Forests — An Architectural Analysis. XVII + 441 pages, 111 figs., 10 tables. Berlin‐Heidelberg—New York, Springer‐Verlag. ISBN 3‐540‐08494‐0.

Preface: “This book is not an exhaustive survey of known information in the manner of a text-book – the subject is much too big for this to be possible in a relatively concise volume – but presents a point of view. We are concerned ultimately with the analysis of tropical ecosystems, mainly forests, in terms of their constituent units, the individual trees. Many different approaches are possible in the analysis of tropical forests. A simple one is to treat the trees as obstacles which in a military sense intercept projectiles or are a hindrance to foot soldiers (Addor et al., 1970). A similar ap- proach might be adopted by an engineer confronted by a forest which has to be removed to permit road construc- tion. The timber merchant is concerned with the ability of a forest to yield saleable lumber. The interest here is in the size of the larger trunks with some concern for the kinds of trees.

At a less destructive level the scientist aims to comprehend the forest from many different points of view. The forester himself, in conjunction with the taxonomist, will wish to analyze the floristic composition of the forest and perhaps account for species diversity in an evolutionary time scale (e.g., Fedorov, 1966; Ashton, 1969). The evolutionary biologist in his turn may be concerned with reproductive strategies in forest trees (e.g., Bawa, 1974), especially in a comparative way.

The approach adopted by the ecologist offers the greatest scope, since he may combine several different methods of analysis. Much research has gone into the physiognomy of tropical forests, size distribution of trees, stratification, diversity in relation to soil type or soil moisture content and has been summarized recently by Rollet (1974). Phenological studies of tropical forests have produced a great deal of data which reveals the extent to which flower- ing, fruiting and leaf fall mayor may not be seasonal (e.g., Coster, 1923; Holttum, 1940, 1953; cf. also Lieth, 1970). The production ecologist is interested in the forest as an efficient system for light interception and yield of dry matter, both in a relative and a comparative way (e.g., Kira, 1978; Kira et al., 1964, 1969; Monsi et al., 1973; Bernard – Reversat, 1975). Photosynthetic efficiency in terms initially of leaf and branch orientation but ultimately in competitive ability is another stimulating approach which is summarized in the description of trees as “crafty green strategists” (Horn, 1971).

A universal tendency in these approaches is to treat trees as equivalent units – as taxonomic, physiological, reproductive units and so on. Much less attention has been given to the trees in the forest as individuals. This is our approach. However, we do not merely regard trees as individuals at one point in time, but as genetically diverse, developing, changing individuals, which respond in various ways to fluctuations in climate and microclimate, the incidence of insects, fungal and other parasites but particularly to changes in surrounding trees. The tree is then seen as an active, adaptable unit and the forest is made up of a vast number of such units interacting with each other.”

Read more

Forest City Rendezvous

This website of Civitas Naturalis is about the rendezvous of forest and city. One of the two basic colours therefor is Pantone® Forest Green 17-0230 TPG. It is used in links, sidebars and menus.

It represents the forest of course, an obvious and easy to be remembered association. It is the complementary colour of the Pantone® Poppy Red, which has been chosen representing the city.

The colour also symbolises in a broader sense nature in the Ecosystem City canvas. It is within that the functional component representing the natural environment as organism, surrounding the city and its life in it, but also being a high and essential value on itself. 

Forests: Elements of Silvology

Oldeman, R.A.A. (1990). Forests: Elements of Silvology. Berlin Heidelberg: Springer-Verlag.

Silvology is the general science of forest ecosystems, without the usual division between Man and Nature. This systematic treatment of forests intends to integrate and harmonize existing approaches with the help of systems modeling in a hierarchy of close system levels, according to criteria of biological architecture, biomass production and species composition. Scientists and practitioners will appreciate this synoptic treatment of forests and their ecology, allowing the balance of holistic and reductionist viewpoints, and the placement of phenomena and techniques.

Topics covered include: – introduction of the methods, – sections on forest organisms, – a special chapter on trees, – eco-units, i.e. forest ecosystems developing after some zero-event like fire, storm or waterlogging, – silvatic mosaics built by the eco-units of different size, architecture and species composition, – a summary of silvological rules determining system’s behaviour at every level, e.g. fragmentation and fusion, transfer of functions, irreversibility and process oscillation. Read more

A city within a forest

Vancouver, ca. 1920. In the beginning, there was a forest. A redwood forest. Then came men and built their city in the forest. They cut the trees and destroyed all forest life. The last remains are there on this picture: some last standing trees. Impressive actually.

Later, these monuments of nature (some more than 3000 years old) also disappeared because of the need of city development and ‘modern’ urban planning concepts of those days. And now, anno 2020, one century later, humanity seem to have rediscovered the environmental ‘fashion look’. It talks and thinks as in modern times, about climate change, CO2 reduction, planting trees to prevent sea level rise and the development of the cities back to green. Urban planners are busy under volatile political skies. So nothing is sure.

There is the pressure I sense, to come up with new and true solutions for earlier failing urban concepts and huge forest and ecosystem losses. Back to basics is an optimistic thought. The circle seems to close but it will not entirely be expected do so, that is to say, not really, I’m afraid.

The hundreds of thousands of species will not repopulate the city though and turn the system on again towards the intrinsic and worthy ecological spectrum like Alexander von Humboldt, Charles Darwin and John Muir once described. Look at this picture of Vancouver and sense the thin line of where we came from, once the great forest. It looks like the last eagles high in the tree on the left are waiting for their chances. Shops, people, trams and cars though do not have much to offer for them.